One Lafayette Road P.U. Box 778 Hampton, N.H. 03843-0776 p 603 926 8345 - 1603 876 8871 envirosystems.com

March 23, 2011

Mr. Arthur Powers **Exxon Mobil Oil Corporation** 52 Beacham Street Everett, Massachusetts 02149

Dear Mr. Powers:

Enclosed, please find one (1) copy of our report presenting the results of a toxicity test completed using an effluent sample collected from the Exxon Mobil Terminal located in Everett, Massachusetts during March 2011. Acute toxicity was evaluated using the marine species, Americamysis bahia.

Please do not hesitate to call me, Kirk Cram or Petra Karbe should you have any questions regarding the report.

Sincerely,

EnviroSystems, Incorporated

Kenneth A. Simon

President

Enclosure

WET Test Report Certification Report Number 20747-11-03 One (1) copy + email

Ms. Sandra Perry - Triumvirate Environmental (1 copy) CC:

EnviroSystems, Inc.
One Lafayetts Road
P.O. Box 778
Hampton, ICH, 03843-0775
p.603-928-0345 + £603-928-3323
envirosystems.com

March 23, 2011

Ms. Sandra Perry Triumvirate Environmental 61 Inner Belt Road Somerville, Massachusetts 02143

Dear Ms. Perry:

Enclosed, please find one (1) copy of our report presenting the results of a toxicity test completed using an effluent sample collected from the Exxon Mobil Terminal located in Everett, Massachusetts during March 2011. Acute toxicity was evaluated using the marine species, *Americamysis bahia*.

Please do not hesitate to call me, Kirk Cram or Petra Karbe should you have any questions regarding the report.

Sincerely,

EnviroSystems, Incorporated

Kenneth A. Simon

President

Enclosure

CC:

WET Test Report Certification Report Number 20747-11-03

One (1) copy + email

Mr. Arthur Powers - Exxon Mobil (1 copy)

TOXICOLOGICAL EVALUATION OF A TREATED INDUSTRIAL EFFLUENT BIOMONITORING SUPPORT FOR A NPDES PERMIT: March 2011

Exxon Mobil Oil Corporation

Everett, Massachusetts
NPDES Permit Number MA0000833

Prepared For

Exxon Mobil Oil Corporation 52 Beacham Street Everett, Massachusetts 02149

Ву

EnviroSystems, Incorporated One Lafayette Road Hampton, New Hampshire 03842

March 2011 Reference Number Exxon Mobil20747-11-03

STUDY NUMBER 20747

EXECUTIVE SUMMARY

The following summarizes the results of an acute exposure bioassay performed during March 2011 in support of the NPDES biomonitoring requirements of the Exxon Mobil terminal located in Everett, Massachusetts. An acute definitive assay was completed using the marine species, *Americamysis bahia*.

A. bahia were ≤5 days old at the start of the test. Dilution water, provided by ESI, was from the Hampton-Seabrook Estuary. This water is classified as SA-1 and has been used to culture marine test organisms since 1981.

Samples were received under chain of custody in good order. All sample receipt, test conditions and control endpoints were within protocol specifications except where otherwise noted. The results presented in this report relate only to the samples described on the chain(s) of custody and sample receipt log(s).

Results from the acute exposure assay and their relationship to permit limits are summarized in the following matrix.

Acute Toxicity Evaluation

Species	Exposure	LC-50	A-NOEC	Permit Limit (LC-50)	Meets Permit Limit	Assay Meets Protocol Limit
Americamysis bahia	48 Hours	>100%	100%	>50%	Yes	Yes

TOXICOLOGICAL EVALUATION OF A TREATED INDUSTRIAL EFFLUENT BIOMONITORING SUPPORT FOR A NPDES PERMIT: March 2011

Exxon Mobil Oil Corporation

Everett, Massachusetts
NPDES Permit Number MA0000833

1.0 INTRODUCTION

This report presents the results of an acute toxicity test completed on an effluent sample collected from the Exxon Mobil terminal located in Everett, Massachusetts. The sample was provided by Triumvirate Environmental, Somerville, Massachusetts. Testing was based on programs and protocols developed by the US EPA (2002) and involved completing a 48 hour acute toxicity test with the marine species, *Americamysis bahia*. Testing was performed at EnviroSystems, Incorporated (ESI), Hampton, New Hampshire in accordance with the provisions of the NELAC Standards (2000).

Acute toxicity tests involve preparing a series of concentrations by diluting effluent with control water. Groups of test animals are exposed to each effluent concentration and a control for a specified period. In acute tests, mortality data for each concentration are used to calculate (by regression) the median lethal concentration, or LC-50, defined as the effluent concentration which kills half of the test animals. Samples with high LC-50 values are less likely to cause significant environmental impacts. The acute no observed effect concentration (A-NOEC) provides information on the effluent concentration having minimal acute effects in the environment and is defined as the highest tested effluent concentration that causes no significant mortality.

2.0 MATERIALS AND METHODS

2.1 General Methods

Toxicological and analytical protocols used in this program follow procedures primarily designed by the EPA to provide standard approaches for the evaluation of toxicological effects of discharges on aquatic organisms, and for the analysis of water samples. See Section 4.0 for a list of references.

2.2 Test Species

When necessary, *A. bahia* were acclimated to approximate test conditions prior to use in the assay and then transferred to test chambers using a large bore glass pipet, minimizing the amount of water added to test solutions.

2.3 Effluent and Laboratory Water

Effluent collection information is provided in Table 1. Samples were stored at 4°C and warmed to 25±1°C prior to preparing test solutions. Effluent used in the *A. bahia* assay was salinity adjusted to 25±2 ppt using artificial sea salts according to protocol (EPA 2002). Laboratory water was collected from the Hampton/Seabrook Estuary. This water is classified as SA-1 and has been used to culture marine test organisms since 1981.

Total residual chlorine (TRC) was measured by amperometric titration (MDL 0.02 mg/L) in the effluent sample. Samples with ≥0.02 mg/L TRC were dechlorinated using sodium thiosulfate (EPA 2002).

2.4 Acute Toxicity Tests

Test concentrations for the assay were 100%, 50%, 25%, 12.5%, and 6.25% effluent. The 48 hour toxicity tests were conducted at 25±1°C with a photoperiod of 16:8 hours light:dark. Test chambers for the acute assays were 250 mL glass beakers containing 200 mL test solution in each of 4 replicates with 10 organisms/replicate. Survival and dissolved oxygen were measured daily in all replicates. Temperature, salinity pH and specific conductivity were measured daily in one replicate of each test treatment.

2.5 Data Analysis

Data analysis involved, as required, determination of LC-50 values using CETIS, Comprehensive Environmental Toxicity Information System, software. The program computes LC-50 values using the Spearman-Karber and Linear Regress (Probit) methods following protocol guidelines. If survival in the highest test concentration was >50%, LC-50 values were obtained by direct observation of the raw data. The A-NOEC was determined as the highest test concentration which caused no significant mortality.

2.6 Quality Control

As part of the laboratory quality control program, standard reference toxicant assays are completed on a regular basis for each test species. These results provide relative health and response data while allowing for comparison with historic data sets. See Table 2 for details.

3.0 RESULTS AND DISCUSSION

Results of the acute exposure bioassay completed using *A. bahia* are summarized in Table 3. Effluent and dilution water characteristics are presented in Table 4. Toxicity test summary sheets are included after the tables. Support data, including copies of laboratory bench sheets, are included in Appendix A.

Minimum test acceptability criteria require ≥90% survival in the control concentrations. Achievement of these results indicate that healthy test organisms were used and that the dilution water had no significant adverse impact on the outcome of the assay. See the Executive Summary and Table 3 for test acceptability.

4.0 LITERATURE CITED

APHA. 1998. Standard Methods for the Examination of Water and Wastewater, 20th edition. Washington D.C.

National Environmental Laboratory Accreditation Conference: Quality Systems. Chapter 5. June 2000.

US EPA. 2002. Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms. Fifth Edition. EPA-821-R-02-012.

US EPA. 2008. Attachment G: NPDES Whole Effluent Toxicity Testing, Monitoring and Reporting Tips and Common Pitfalls. US EPA Region I Offices, Boston, Massachusetts.

TABLE 1. Summary of Sample Collection Information.

Exxon Mobil Terminal Effluent Evaluation. March 2011.

Sample		Collec	ction	Recei	pt	Arrival
Description	Туре	Date	Time	Date	Time	Temp °C
Outfall 001 A	Grab	03/11/11	1100	03/12/11	0820	2

TABLE 2. Summary of Reference Toxicant Data.

Exxon Mobil Terminal Effluent Evaluation. March 2011.

Date	Е	ndpoint	Value	Historic Mean/ Central Tendency	Acceptable Range	Reference Toxicant
A. bahia					*****	
02/22/11	Survival	LC-50 - 48 Hr	25.8	22.2	18.0 - 26.3	SDS (mg/L)

Means and Acceptable Ranges based on the most recent 20 reference toxicant assays

TABLE 3. Summary of Acute Evaluation Results.

Exxon Mobil Terminal Effluent Evaluation. March 2011.

Survival Species Exposure Lab 6.25% 12.5% 25% 50% 100% A. bahia 48 hours 100% 95% 97.5% 100% 97.5% 87.5%

LC-50 COMPUTATION TECHNIQUE Spearman-Linear Nonlinear Species Exposure Karber Regression Regression A-NOEC A. bahia 48 Hours NC NC NC 100%

TABLE 4. Summary of Effluent and Diluent Characteristics. Exxon Mobil Terminal Effluent Evaluation. March 2011.

PARAMETER	UNITS	EFFLUENT	LABORATORY WATER
pH - As Received	SU	7.32	8.06
pH- Salinity Adjusted	SU	7.93	
Salinity - As Received	ppt	<1	26
Salinity - Salinity Adjusted	ppt	25	-
TRC	mg/L	<0.02	<0.02
Total Solids	mg/L	620	29000
Total Suspended Solids	mg/L	62	10
Ammonia	mg/L as N	0.47	<0.1
Total Organic Carbon	mg/L as C	5	<0.8
Aluminum, total	mg/L	1.9	-
Cadmium, total	mg/L	<0.0005	-
Calcium, total	mg/L	41	-
Chromium, total	mg/L	0.007	-
Copper, total	mg/L	0.018	-
Lead, total	mg/L	0.064	-
Magnesium, total	mg/L	5.8	-
Nickel, total	mg/L	0.006	-
Zinc, total	mg/L	0.12	-

Additional water quality and analytical chemistry support data are available in Appendix A.

TOXICITY TEST SUMMARY SHEET

FACILITY NAME:	Exxon Mobil Everett Terminal	_TEST START DATE:	03/12/11								
NPDES PERMIT NO.:	MA0000833	TEST END DATE:	03/14/11								
TEST TYPE X Acute Chronic Modified Chronic (Reporting Acute Values) 24 Hour Screen	TEST SPECIES Pimephales promelas Ceriodaphnia dubia Daphnia pulex X Americamysis bahia Cyprinodon variegatus Menidia beryllina Arbacia punctulata Champia parvula Selenastrum capricornutum	SAMPLE TYPE Prechlorinated Dechlorinated Chlorine Spiked in Lab Chlorinated on Site Unchlorinated X No Detectable Chlorine	SAMPLE METHOD X Grab Composite Flow-thru Other Upon Receipt								
DILUTION WATER:											
	llected at a point upstream or away										
	sources of contamination; Receiving Water Name: <u>Island End River (Mystic River Watershed)</u> X Alternate surface water of known quality and hardness, to generally reflect the characteristics of the										
receiving water; Receiving Water Name: Hampton Estuary											
Synthetic water prepared using either Millipore Milli-Q or equivalent deionized water and reagent grade											
chemicals; or deionized water combined with mineral water. Artificial sea salts mixed with deionized water											
Deionized water an											
Other											
EFFLUENT SAMPLING	DATES: 03/11/11										
	RATIONS TESTED (%): 6.25%, 1:	2.5%, 25%, 50%, 100%									
Permit Limit Concentrat	ion: <u>>50</u> %										
Was the effluent salinity	adjusted? Yes_If yes, to	what level?25	_ppt								
REFERENCE TOXICAN	NT TEST DATE: 02/22/11 LC-5	0: 25.8 mg/L Sodium Do	odecyl Sulfate								
	PERMIT LIMITS AND Test Acceptabil										
Mean Control Survival	: <u>100</u> %										
LIMITS		RESULTS									
LC-50: <u>>50</u> %		LC-50	<u>>100</u> %								
A-NOEC: %		Upper Limit: Lower Limit:	-								
/\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Method:	Direct observation								
C-NOEC:% -		A-NOEC	100%								
IC- %		C-NOEC									
IC%		IC	-								

APPENDIX A

DATA SHEETS

STATISTICAL SUPPORT

Contents	Number of Pages
Methods Used in NPDES Permit Biomonitoring Testing	1
A. bahia Acute Bioassay Bench Sheet	2
A. bahia LC-50 Analysis and Survival Statistics	0
A. bahia Organism Culture Sheet	1
Preparation of Dilutions and Record of Meters Used	2
Analytical Chemistry Data Report	2
Sample Receipt Record	1
Chain of Custody	1
Total Appendix Pages	10

METHODS USED IN NPDES PERMIT BIOMONITORING TESTING

Parameter	Method
Acute Exposure Bioassays:	
Ceriodaphnia dubia, Daphnia pulex	EPA-821-R-02-012
Pimephales promelas	EPA-821-R-02-012
Americamysis bahia	EPA-821-R-02-012
Menidia beryllina, Cyprinodon variegatus	EPA-821-R-02-012
Chronic Exposure Bioassays:	
Ceriodaphnia dubia	EPA-821-R-02-013, 1002.0
Pimephales promelas	EPA-821-R-02-013, 1000.0
Cyprinodon variegatus	EPA-821-R-02-014, 1004.0
Menidia beryllina	EPA-821-R-02-014, 1006.0
Arbacia punctulata	EPA-821-R-02-014, 1008.0
Champia parvula	EPA-821-R-02-014, 1009.0
Frace Metals:	
ICP Metals	EPA 200.7/SW 6010 and EPA 200.8/SW 6020
Hardness	Standard Methods 20th Edition - Method 2340 B

Wet Chemistries	V	Vet	Ch	em	ist	ries
-----------------	---	-----	----	----	-----	------

Alkalinity	EPA 310.2
Chlorine, Residual	Standard Methods 20 th Edition - Method 4500CLD
Total Organic Carbon	Standard Methods 20 th Edition - Method 5310 C
Specific Conductance	Standard Methods 20 th Edition - Method 2510B
Nitrogen - Ammonia	Standard Methods 20 th Edition - Method 4500NH3G
рН	Standard Methods 20 th Edition - Method 4500H+B
Solids, Total (TS)	Standard Methods 20 th Edition - Method 2540B
Solids, Total Dissolved (TDS)	Standard Methods 20 th Edition - Method 2540C
Solids, Total Suspended (TSS)	Standard Methods 20 th Edition - Method 2540D
Dissolved Oxygen	Standard Methods 20 th Edition - Method 4500-O G

ACUTE BIOASSAY DATA SUMMARY

		000000000000000000000000000000000000000	ing sas (634)	1			(Angle (A	100000000000000000000000000000000000000								08001835435		dziakowa za		1013411015-5169	N.	
STUDY:	20	247		SAMP	LE RE	CEIVE	D	3/12-	()	·			"AS R	RECEIV	ED" EF	FLUEN	T AND	DILU	ENT C	HEMIS	STRIE	S
CLIENT:	Exxon	Mobil		TEST	ORGA	NISM:	A. ba	hia					TRC	TS/S	АММ	тос	Metals	HARD	SAL	PH	s/c	OTHER
SAMPLE	: Termii	nal Eff	luent	ORGA	NISM	SUPPI	LIER	A	RO				20.02	005	004	003	002		0.5	7.32	10691	
DILUENT	: Lat	Sa	H	ORGA	NISM	BATC	H/AGE		<5d			20702 DIL	20,02	octo	005	004				8.00		
SALINITY						ACCOMPANY OF				ر و و <u>-</u>	A-2879 A SALT	SELECTIVE SELECTION OF THE SELECTION OF				ENTAG	` `F					
				le de la companya de																		
CONC	REP		URVIV			00 (mg	•		pH (SU	·		EMP (°C			(µmho:	Í		.INITY	,	C	OMME	ENTS
LAB		0	24	48	0	24	48	0	24	48	0	24	48	0	24	48	0	24	48			
LAD		10	10		7.2		59 58	8,06	7,85	1. 1	24	24	24	39860	40110	41280	120	26	27			
	В	10	10	10	7.2	5,9																
	C	10	10	10	7.2		5.8															
	D	10	10	10	7.2	6.0	5.9						siene.								 	
RW	A					,					24	2		Marko			X					
	В																					
	С																	<u> </u>	7			
	D																					
6.25%	Α	10	10	9	7.1	6,0	5.9	825	7.93	7.84	24	24	24	40160	¹ 40530	41750	26	26	27			
	В	10	0	9	7,1	5.9	59			31												
	С	10	10	10	7.1	5.9	5.8															
	D	(0	10	Ó	7.1	5.9.	5.8			.4.4			200 - 200 -									
12.5%	Α	10	6	10	7.3	5.9.	5.8	8.05	7.94	7.85	24	24	24	40040	40790	41710	26	26	27	-	Marine Land	
	В	10	PO	10	7.3	59	5,9						#¥									
	С	10	1/0	10	73	5.9	5.9															
	D	10	10	10	7.3	60	5.9															

ACUTE BIOASSAY DATA SUMMARY

STUDY: 20747	SAMPLE RECEIVED 3/12/11		"AS R	ECEIV	ED" EF	FLUEN	T AND	DILUE	ENT C	HEMI	STRIE	S
CLIENT: Exxon Mobil	TEST ORGANISM: A. bahia		TRC	TS/S	AMM	тос	ALK	HARD	SAL	РН	S/C	OTHER
SAMPLE: Terminal Effluent	ORGANISM SUPPLIER ARO	EFF		see	page	1 of 2			***************************************	·		
DILUENT: Lab Salt	ORGANISM BATCH/AGE 45d	DIL										•

SALINITY	'ADJU	STMEN	NT REC	CORD:		ML	_ EFFLI	UENT ·	ŀ	G SE	A SALT	'S =	100% A	CTUAL	PERC	ENTAG	iΕ			
CONC	REP	s	URVIV	/AL	D	0 (mg	/L)		pH (St	٦)	Т	EMP (°	C)	S/C	(µmho:	s/cm)	m) SALINIT		(ppt)	COMMENTS
		0	24	48	0	24	48	0	24	48	0	24	48	0	24	48	0	24	48	
25%	A	(0)	10	10	7.3	6.0	5.9	8,03	7.95	7.91	24	24	74	40040	40680	41470	260	76	27	
	В	10	10	10	7.3	58	5.8													
	С	10	10	10	7.3	5.9	5.9						-							
	D	10	10	9	7.3	5,9	SS	,												
50%	A	0)	10	10	7.6	5,7	5.6	7.99	8.00	7.97	24	24	24	39840	40860	41960	25	26	27	
	В	(0)	10	10	7.6	5.7.	5.6													
	С	Ø)o	9	7.6	5,7	5.7							#	·					. '
	D	10	10	10	7.6	5.6	5.6													
100%	А	10	G	9	9.2	5,5	5.3	7.93	8.01	8.09	24	24	24	39420	42020	41030	25	26	26	
	В	10	10	B	9.7	5.3	5.2					Ç. CYA		MW)	. 1.			A. A.		
	С	10	h	9	9.2	5,2	2,3													
	D	ΙÞ	10	9	9.2	52	5.1													
DATE		अध्या	313	3:14	3/12/11	313	314													
TIME		13 25	1400	1130	1300	1355	1125													
INITIALS		Ub	D*\	014	LB	Dù	010													

Ree 3/12/11

Aquatic Research Organisms

DATA SHEET

1. Organism History	
Species AMERICAMYSIS bahiA	
Source: Lab reared Hatchery reared Field collected	
Hatch date Receipt date	
Lot number 03/0//MS Strain	
Brood origination Florida	
II. Water Quality	
Temperature 25 °C Salinity ~30 ppt D.O ppm	
pH 7.8 su Hardness ppm Alkalinity ppm	
II. Culture Conditions	
Freshwater Saltwater Other	
Recirculating Flow through Static	
DIET: Flake food Phytoplankton Trout chow	
Artemia Rotifers YCT Other Every Shrip	Die 7
Prophylactic treatments:	
Comments:	
V. Shipping Information	
Client:# of Organisms# Of Organisms#	
Carrier: Date shipped3-/2-//	
Biologist: Wark Joseph	

PREPARATION of DILUTIONS

STUDY: SPECIES: A. bahia	CLIENT: Ex	CLIENT: Exxon Mobil				
Diluent: Lab Salt	Sample: EO					
Concentration	Vol. Eff.(mls)	Final Vol.(mls)				
Lab	0	800				
6.25%	5°	ĺ				
12.5%	(00)					
25%	200					
50%	HW					
100%	800					
INITIALS:	lb					
TIME:	1135					
DATE:	3/12/11					

RECORD OF METERS USED

STUDY:	CLIENT: Exxon Mobil								
A.bahia									
Exposure (Hours)									
	0	24	48						
Water Quality Station #		1	/						
Initials / Date	163/12/11	DM 313-41	DM 3-74-91						

Water Quality Station #1		Water Quality S	Station #2	COMMENTS
DO meter #	24	DO meter #		
DO probe #	89	DO probe #		
pH meter#	1097	pH meter #		
pH probe #	93	pH probe #		
S/C meter#	ys1308	'S/C meter #	/	
S/C probe #	. \	S/C probe #		
Salinity meter #		Salinity meter #		

Report No:

20747

SDG:

Project:

Exxon Mobil

Sample ID:

Effluent Start

Matrix:

Water

Sampled:

03/11/11 1100

Parameter		Result	Quant Limit	Units	Date Prepared	Date of Analysis	INIT/Method/Reference
Total solids	20747-005	620	10	mg/L	03/16/11 0907	03/16/11 1020	EAL/SM2540B
Total suspended solids	20747-005	62	2.5	mg/L	03/15/11 1417	03/15/11 1417	EAL/SM 2540D
Ammonia-N	20747-004	0.47	0.1	mg/L as N	03/16/11 1453	03/16/11 1453	JLH/SM 4500-NH3 G
Total organic carbon	20747-003	5	0.4	mg/L	03/14/11	03/15/11	EAL/SM 5310 C
Aluminum, total	20747-002	1.9	0.02	mg/L	03/18/11 0830	03/18/11	JLH/EPA 200.8
Cadmium, total	20747-002	ND	0.0005	mg/L	03/18/11 0830	03/18/11	JLH/EPA 200.8
Calcium, total	20747-002	41	0.05	mg/L	03/18/11 0830	03/18/11	JLH/EPA 200.8
Chromium, total	20747-002	0.007	0.002	mg/L	03/18/11 0830	03/18/11	JLH/EPA 200.8
Copper, total	20747-002	0.018	0.002	mg/L	03/18/11 0830	03/18/11	JLH/EPA 200.8
Lead, total	20747-002	0.064	0.0005	mg/L	03/18/11 0830	03/18/11	JLH/EPA 200.8
Magnesium, total	20747-002	5.8	0.05	mg/L	03/18/11 0830	03/18/11	JLH/EPA 200.8
Nickel, total	20747-002	0.006	0.002	mg/L	03/18/11 0830	03/18/11	JLH/EPA 200.8
Zinc, total	20747-002	0.12	0.002	mg/L	03/18/11 0830	03/18/11	JLH/EPA 200.8

Notes:

ND = Not Detected

Report No:

20702

SDG:

Project:

Diluent - Laboratory Seawater

Sample ID:

Lab Salt 03/12/11

Matrix:

Water

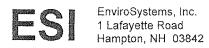
Sampled:

03/12/11 1225

Parameter		Result	Quant Limit	Units	Date Prepared	Date of Analysis	INIT/Method/Reference
Total solids Total suspended solids Ammonia-N Total organic carbon	20702-006 20702-006 20702-005 20702-004	29000 10 ND ND	50 2.5 0.1 0.8	mg/L mg/L mg/L as N mg/L	03/15/11 1417	03/15/11 1417	EAL/SM2540B EAL/SM 2540D JLH/SM 4500-NH3 G EAL/SM 5310 C

Notes:

ND = Not Detected


SAMPLE RECEIPT AND CONDITION DOCUMENTATION

Page 1 of 1

STUDY NO: SDG No: Project:	20747 Exxon Mobil Exxon Mobil		
Delivered via:	ESI		
Date and Time Received:	03/12/11 0820	Date and Time Logged into Lab:	03/12/11 1035
Recieved By:	DW	Logged into Lab by:	LB
Air bill / Way bill:	No	Air bill included in folder if received?	NA
Cooler on ice/packs:	Yes	Custody Seals present?	NA
Cooler Blank Temp (C) at arriva	l: 2	Custody Seals intact?	NA
Number of COC Pages:	1		
COC Serial Number(s):	A1007127		
COC Complete:	Yes	Does the info on the COC match the samples?	Yes
Sampled Date	: Yes	Were samples received within holding time?	Yes
Field ID complete	: Yes	Were all samples properly labeled?	Yes
Sampled Time	: Yes	Were proper sample containers used?	Yes
Analysis request	: Yes	Were samples received intact? (none broken or leaking)	Yes
COC Signed and dated:	Yes	Were sample volumes sufficient for requested analysis?	Yes
Were all samples received?	Yes	Were VOC vials free of headspace?	NA
Client notification/authorization:	Not required		

			•	Bottle	Req'd	Verified
Field ID	Lab ID	Mx	Analysis Requested		Pres'n	Pres'n
Effluent Start	20747-001	W	AB48AD StartSample	2x3750 P	4 C	
Effluent Start	20747-002	W	Total Metals Cd,Cr,Ni,Pb,Cu,Zn,Al,Ca,Mg;	250 P	HNO3	
Effluent Start	20747-003	W	TOC	1x40 G	H2SO4	
Effluent Start	20747-004	W	NH3;	125 P	H2SO4	
Effluent Start	20747-005	W	TS,TSS-Low	2x1000 P	4 C	

Notes and qualifications:			
Land of the Control o			

Voice: 603-926-3345 FAX: 603-926-3521 ESI Job No: 20747

			CHAIN	OF C	USTODY	/ DOC	UMENT	ATION					
Client:	Triumvirate Environmental/Exxon Mob	Contact:							Project Name: Exxon Mobil				
Report to:	Arthur Powers & Sandra Perry	Address							Number:	P0335		Task: 0001	
Invoice to:	Sandra Perry	Address				3		Project Manager: Arthur Powers &			Powers & :	Sandra Perry	
Voice:	617-715-8947	Fax:	NA					email: vsreng@triumvirate.com			com	E	RR
Protocol: NF	PDES										·		
Lab Number (assigned by lab)	Your Field ID: Out fall container)	Date Sampled	Time Sampled		oled Grab or co posite (G/C)	m- No ≆	Contair Size (mL)	Type (P/G/T)	Field Preser- vation	Matrix S=Solid W=Water	Filter N=Not needed F=Done in field L=Lab to do	4 *	
001	Effluent Start	3-1/-11	1100	V.51			3750	Р	4 C	Water	N	AB48AD StartSample	
002	Effluent Start		1		\mathcal{I}	1	250	Р	HNO3	Water	N	Total Metals Cd,Cr,Ni,Pb,Cu,Zn,Al,Ca,Mg;	
003	Effluent Start					1	40	G	H2SO4	Water	N	тос	
004	Effluent Start			$\bot /\!\!\!\! \bot$. 1	125	Р	H2SO4	Water	N	NH3;	
005	Effluent Start	少	y y	W.	V	2	1000	Р	4 C	Water	N	TS,TSS-Low	
				-		-							
				-									
						-				-			-
						_							
				-									
												,	
Relinquished (<u> </u>	Date: 3	1	// Time	 : 08	 []	Acceive	d By: 1/1 2	Lite		Date 3 1/2 1/ Time: OSJO AN	
Relinquished I			Date:		Time				d at Lab By:			Date: Time:	
Comments:													
ERF	3		***************************************								/		
COC Number:	A1007127						Sample	Delivery G	Froup No:	July 201	b	Page of	